Pre-Requisites: Knowledge of SolidWorks and basic mechanical engineering concepts is recommended.

Daily Schedule: 8:30 a.m. - 4:30 p.m.

Length: 2 Days

This three-day, hands-on training program provides an in-depth session on the basics of turbulent fluid flow analysis, in addition to covering meshing concerns, modeling concerns, analysis, post-processing, available options, and preferences.

Introduction: Fundamentals of Flow Simulation
 » About This Course

Lesson 1: Creating a SolidWorks Flow Simulation Project
 » Objectives
 » Case Study: Manifold Assembly
 » Model Preparation
 » Post-processing

Lesson 2: Meshing
 » Objectives
 » Case Study: Chemistry Hood
 » Computational Mesh
 » Basic Mesh
 » Initial Mesh
 » Geometry Resolution
 » Optimize Thin Wall Resolution
 » Result Resolution/Level of Initial Mesh
 » Control Planes

Lesson 3: Thermal Analysis
 » Objectives
 » Case Study: Electronics Enclosure
 » Fans
 » Perforated Plates

Lesson 4: External Transient Analysis
 » Objectives
 » Case Study: Flow Around a Cylinder
 » Reynolds Number
 » External Flow
 » Transient Analysis
 » Turbulence Intensity
 » Solution Adaptive Mesh Refinement
 » Two Dimensional Flow
 » Computational Domain
 » Calculation Control Options
 » Time Animation

Lesson 5: Conjugate Heat Transfer
 » Objectives
 » Case Study: Heated Cold Plate
 » Conjugate Heat Transfer
 » Real Gases
Lesson 6: EFD Zooming
 » Objectives
 » Case Study: Electronics Enclosure
 » EFD Zooming

Lesson 7: Porous Media
 » Objectives
 » Case Study: Catalytic Converter
 » Porous Media
 » Design Modification

Lesson 8: Rotating Reference Frames
 » Objectives
 » Rotating Reference Frame
 » Case Study: Fan Assembly

Lesson 9: Parametric Study
 » Objectives
 » Case Study: Piston Valve
 » Parametric Analysis
 » Goal Optimization
 » Design Scenario

Lesson 10: Cavitation
 » Objectives
 » Case Study: Cone Valve
 » Cavitation

Lesson 11: Relative Humidity
 » Objectives
 » Relative Humidity
 » Case Study: Cook House

Lesson 12: Particle Trajectory
 » Objectives
 » Case Study: Hurricane Generator
 » Particle Trajectories

Lesson 13: Supersonic Flow
 » Objectives
 » Supersonic Flow
 » Case Study: Conical Body
 » Drag Coefficient
 » Shock Waves

Lesson 14: FEA Load Transfer
 » Objectives
 » Case Study: Billboard